Classical Control and Quantum Circuits in Enriched Category Theory

Abstract

We describe categorical models of a circuit-based (quantum) functional programming language. We show that enriched categories play a crucial role. Following earlier work on QWire by Paykin et al., we consider both a simple first-order linear language for circuits, and a more powerful host language, such that the circuit language is embedded inside the host language. Our categorical semantics for the host language is standard, and involves cartesian closed categories and monads. We interpret the circuit language not in an ordinary category, but in a category that is enriched in the host category. As an extended example, we recall an earlier result that the category of W*-algebras is dcpo-enriched, and we use this model to extend the circuit language with some recursive types.

Publication
The Thirty-Third Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIII)

See also the later version: [Rennela2020]

Related